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Abstract--Having taken the solid network movement in the two-phase zone into consideration, this paper 
develops the original local solute redistribution equation. The additional term divV~ in the new equation 
is dependent on the history of an effective stress a' acting upon the solid network. The solidifying isotherm 
advances quickly and there is not enough time to make the solid network compressible at large cooling 
rates• With decreasing cooling rate, movement of the isotherm is gradually slowed and there is enough 
time to make the network deformed. It is suggested that the compressibility due to the normal stress 
may produce "channel space" filled by unstable flow under the conditions of small cooling rate during 
solidification. The calculated results have demonstrated that the back-flow toward the centerline increases 

when the stress is considered• 

1. INTRODUCTION 

It has been established both theoretically and exper- 
imentally that some defects that occur in a solidifying 
metal alloy, such as porosity, segregation, and hot 
tear, are related to interdendritic fluid flow in the two- 
phase zone of the alloy. The driving forces producing 
the interdendritic fluid flow, as a rule, include siphonic 
force due to solidification shrinkage (or expansion) 
and gravity acting on a fluid of variable density [1- 
8]. Under certain conditions, solid contraction and 
movement in the two-phase zone should also be con- 
sidered as a driving force. It is generally believed that 
the solid contraction and movement affect the inter- 
dendritic fluid flow when the solid crystals in the two- 
phase zone form a network. In his analysis of the 
feeding mechanism in a solidifying casting, Campbell 
[9, 10] proposed that, during interdendritic feeding, 
the shrinkage pressure could become so high that the 
solid dendritic network and the solid outer shell of the 
casting also start to deform under the internal suction 
effect, and the hydrostatic tensions in metal alloys 
were evaluated theoretically considering the viscous 
flow of residual liquid and the general plastic collapse 
of the casting. Flemings [11] pointed out in research 
on dendritic solidification of semi-solid metals that 
strains with resulting liquid flow resulted in localized 
regions of macrosegregation in actual castings and 
ingots, and centerline segregation in continuous cast- 
ing could be visualized as having a similar root cause, 
resulting from thermal contraction of the solid, accen- 
tuated by "bulging" of the casting due to the metallo- 
static head. 

Quantitative descriptions of the interdendritic fluid 
flow are generally based on Darcy's equation and the 
local solute redistribution equation [1, 2]. A further 

mathematical model of convection in the two-phase 
zone, that accounts for momentum, heat and species 
transport in a multiphase and multiconstituent 
system, has recently been addressed. In this paper the 
local solute redistribution equation is developed with 
principles from the general model proposed by 
Bennon and Incropera [12, 13]. 

Assumptions for the local solute redistribution 
equation have generally been as follows [1, 6] : 

(1) a small volume element in the two-phase zone 
is large enough that the fraction solid within it at any 
time is exactly the local average, but small enough 
that it can be treated as a differential element ; 

(2) there is no movement of the solid phase into or 
out of the element ; 

(3) solute enters or leaves the element only by liquid 
flow to feed shrinkage ; 

(4) mass flow in or out of the element by diffusion 
is merged into the fluid flow ; 

(5) solidification occurs with equilibrium at the 
solid-liquid interface so that there is no undercooling, 
and the rate of solidification is controlled only by the 
rate of heat transfer and convection within the two- 
phase zone ; 

(6) the local temperature and the composition of 
the solid at the interface are specified by the local 
composition of the liquid ; 

(7) diffusion in the solid is negligible ; 
(8) solid density is constant ; 
(9) no pore forms during solidification• 

The purpose of this work is to relax assumptions 
(2) and (3). Movement of the solid phase in the two- 
phase zone and movement of the solute into or out of 
the element by liquid flow and by solid movement will 
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NOMENCLATURE 

aE constant in equation (21b) [m] 
bE~ constant in equation (21b) [ms -q] 
bLx constant in equation (21a) [m s -q] 
C local average concentration [wt%] 
CL liquid concentration [wt%] 
Cs local solid concentration [wt%] 
Cs local average solid concentration 

[wt%] 
E Young's modulus IN m 2] 
g gravity acceleration [ms -2] 
gL volume fraction liquid 
gs volume fraction solid 
k equilibrium partition ratio 
K permeability [m 2] 
L length of ingot [m] 
m solid-solid contact coefficient 
p pressure IN m 2] 
P0 ambient pressure [N m -z] 
q constant in equation (21) 
t time Is] 
T temperature [°C] 
TE eutectic temperature [°C] 
TL liquidus temperature [°C] 
Ub volume of an element in two-phase 

zone [m 3] 
UE velocity of the eutectic isotherm 

[m s- ' ]  

V velocity of two-phase zone [m s ~] 
VL liquid velocity in two-phase zone 

[m s- ' ]  
V s solid velocity in two-phase zone 

[ms- ' ]  
V, component of Vin x-direction [m s ~] 
V~, component of v in y-direction [m s ~] 
XE position of the eutectic isotherm [m] 
XL position of the liquidus isotherm [m]. 

Greek symbols 
compressibility coefficient [m 2 N-~] 

fl solidification shrinkage 
7 strain 
~, cooling rate [°C s r] 
~/ viscosity [N s m -2] 
p average density [kg m -3] 
PL liquid density [kg m 3] 
PLO density of the liquid at the liquidus 

isotherm [kg m 3] 
PLE density of the eutectic liquid [kg m 3] 
Ps solid density [kg m 3] 
PSE density of the eutectic solid [kg m-3] 
a total stress [N m -z] 
a '  effective stress [N m 2] 
as solid stress [N m-2]. 

be taken into consideration. It should be pointed out 
that movement of the solid phase is considered as 
deformation of the solid network after the grains in 
the two-phase zone form a coherent network. 

2. DEVELOPMENT OF THE NEW EQUATION 

The basic equation for describing the effect of solid 
movement on solute redistribution is developed on the 
basis of the models of the continuum approach to a 
porous medium. For solidification occurring in the 
volume element treated as a porous medium, in which 
liquid flow and solid movement occur, the mass con- 
servation equation and the solute conservation equa- 
tion should be given as 

Op 
~ = - V .  (pV) (l) 

and 

0(pC) _ _ V. (pCV) (2) 
8t 

respectively. For a two-phase zone of a binary alloy 
system, each term in equations (1) and (2) is weighted 
with volume fraction solid gs and volume fraction 
liquid gL, that is, 

P = gsPS+gLPL (3) 

p V = gs(Ps Vs) +gL(PL VL) 

pC = gs(psCs) + gL (pL CL) 

(4) 

(5) 

and 

DCV = gs(psCs Vs) +gL(pLCL VL). (6) 

Combining equations (1)-(6) (see Appendix) yields 
a new equation for solute redistribution : 

1 [-OgL - d i v  (gsVs)] ZL - 

- ~ - k  1 +  CL Ot " (7) 

In the analysis, assumptions (2) and (3) were relaxed, 
and the other assumptions used in developing the 
original local redistribution equation were main- 
tained. Comparison of equation (7) to the original 
local redistribution equation, i.e. equation (8), shows 
that the term 1/gL(SgL/&) in the original equation is 
replaced by the term 1/gL[SgL/St'div (gs Vs)] in the new 
equation : 
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Fig. 1. Sketch of solid solid contact in the two-phase zone. 

( vL.vvh± ocL 1 OgL_ 1-/~ l+  . (8) 
gL 0t l - k  ~ ]CL ~t 

3. ANALYSES OF THE NEW EQUATION 

3.1. Meanin 9 of  the new term 
In the left-hand side of equation (7), the term 09L/Ot 

is a local derivative that represents the rate of change 
of the volume fraction liquid with time at a fixed point 
in the two-phase zone, and the term div (#sVs) is a 
new one. Vs is the velocity of deformation of the solid 
network at a point in the two-phase zone, and gs Vs is 
regarded as the solid velocity weighted by the volume 
fraction solid at the point. For convenience, there is 

V~ = gs Vs. (9) 

The method proposed by Bear [14] is used to deal 
with the relationship between V~ and effective stress 
acting upon the solid network. The term div V~ in 
equation (7) is dependent on the history of the effec- 
tive stress a' acting upon the solid network : 

do'' 
div V~ = - a ~ .  (10) 

3.2. The effective stress 
According to Terzaghi's theory [15], the total load 

of the solid-liquid two-phase zone is balanced by 
interparticle stress in the solid network and by pres- 
sure in the liquid phase. Taking into account the con- 
tact areas between the solid phase and liquid phase, 
as shown in Fig. 1, we may write 

a = (1 - m ) p + m a s .  (11) 

The effective stress acting on the solid network, a', 
may be defined as 

a" = mas. (12) 

Typically, the range of 9s used in studying fluid flow 
in the two-phase zone is from 0.2 to 0.75. In this 
region, the liquid-solid contact area is larger than the 
solid-solid contact area, e.g. m = 0.125 at 9s = 0.5, so 
that (1 - m ) p  ~ p. Thus equation (1 I) may be reduced 
to 

a = a '+p.  (13) 

In the above equations, a positive pressure (p > O) 
means compression. Similarly, a and a'  are taken as 

positive in the equations when they are compressive 
stresses. 

In equation (12), the effective stress o.' is dependent 
on the solid-solid contact coefficient, m, which 
depends on the volume fraction solid for a certain 
casting structure such as equiaxed crystals. When gs 
is small, i.e. less than 0.2-0.3, solidification of the alloy 
is mainly by mass feeding, and there is little contact 
among solid-phase grains in the two-phase zone; 
accordingly, m approaches zero. With increasing gs, 
contact among them increases, and the value of m 
increases. 

4. THE EFFECT OF STRESS ON FLUID FLOW 

4. l. Normal compressibility 
A fluid moving relative to a solid boundary exerts 

a force on that boundary. This force is caused by two 
factors. The first is a shear stress due to viscosity and 
velocity gradient at the boundary surface. This shear 
stress gives rise to a force tangential to the surface and 
causes slip in the solid network. The second is pressure 
variation along the surface that acts normal to the 
surface and causes compressibility of the solid 
network. Both slip and compressibility exist sim- 
ultaneously in the solid network. 

The slip due to shear stress and the compressibility 
due to normal stress, which are indicated not with 
a partial derivative, but with the total derivative in 
equation (10), make the solid-phase movement in the 
two-phase zone complicated. In order to simplify the 
problem, only the normal compressibility, i.e. com- 
pressibility due to the normal stress, is considered. 
Though this assumption should be considered an 
approximation, the main feature of the solid-phase 
movement may be emphasized. Since the shear stress 
acting on the solid network changes the relative pos- 
itions among the solid phases, the initial deformation 
takes place as a result of slipping movement and 
readjustment of the solid phases. As the volume frac- 
tion solid increases, these movements decrease and, 
eventually, most of the deformation results from the 
compressibility of the zone associated with the solid 
network. When compressibility is taken into con- 
sideration, equation (10) is turned into [14] 

0a' 
div V~ = - ~ - -  (14) 

~.t 

where the total derivative of equation (10) is replaced 
by the partial derivative. 

4.2. Relationship o f  solid-phase movement with fluid 
f low 

For convenience, multiplying equation (7) by dt/~ T 
gives the new form 

~t cL ~ I  

(15) 
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where Ogs/Ot = -OgL/Ot. The quanti ty inside the first 
bracket on the right-hand side of  equation (15) is 
always negative, regardless of  the value of  k. Accord- 
ing to prior studies [2], different cooling conditions of  
an ingot can cause three modes of  fluid flow in the 
two-phase zone, i.e. stable flow, intermediate flow, 
and unstable flow. These modes are defined by the 
value of  (VL'VT)/~:  stable flow at (VL'VT)/~ > 0; 
and unstable flow at (VL'VT)/e < -- 1. They are still 
used to analyze equation (7) here. 

If  only normal compressibility is taken into 
account, the left-hand side of  equation (15) becomest  

+ d i v V ~  = + Ub OT" 

With decreasing temperature, the volume of  the two- 
phase zone Ub decreases due to the compressive effect 
of  the effective stress acting upon the solid network, 
so there is always 

OUb 
c~T > 0. (17) 

Two cases are discussed below. 
Case a: stableflow (VL'VT)/~ > 0. Since the right- 

hand side of  equation (15) is less than zero at 
(VL" VT)/e > 0, there is 

~?gs 1 c~Ub 

o r  

Ogs 1 ~Ub 
0T < U b c~T " (18) 

Now from equation (17) : 

ags 
0 ~  < 0 (19a) 

Ogs 1 ~?Ub (19b) 
~T > Ub 0 T "  

Equation (19) shows that the volume fraction solid 
increases with decreasing temperature and that the 
variation of  the volume fraction due to the solid-phase 
movement  cannot play an effective role, i.e. the term 
1/Ub(OUb/OT} does not  make the left-hand side of  
equation (15) less than zero. Accordingly, the flow 
remains stable. 

Case b : unstable flow (VL" VT)/e < - 1. The right- 

I For a two-phase zone treated as a porous medium, the 
bulk volume of the element of the two-phase zone is Ub and 
velocity of the solid network in the element is V~. According 
to the concept of total derivative [14], there is 

1 dUb 
div V~ = - -  - -  

Ub dt" 

For normal compressibility only, the above equation 
becomes 

1 0Ub 
div V~ = - - -  

Ub ~?t" 

T=<T1 

T1 

/ I \ 

(a) (b) (e) 

channel only due to solid movement 

Fig. 2. Schematic illustration of influence of solid movement 
on change in flow channel : (a) stable flow ; (b) unstable flow 
only, due to solid movement ; (c) unstable flow due to natural 

convection and solid movement. 

hand side of  equation (15) is greater than zero at 
(VL'VT)/e < -- 1, hence 

c?gs 1 (~U b 
+ > 0. (20) 

c?T Ub ~?T 

Equation (20) indicates that the unstable flow may be 
caused by two terms: Ogs/OTand 1/Ub(OUb/OT). Since 
the term 1/Ub(OUb/~T) is always positive during sol- 
idification, then Ogs/O T may have either of  two values : 
(1) - I/Ub(~Ub/~T) < Ogs/OT <~ O, i.e. ~gs/~.T <~ O, 
which implies that the unstable flow in the two-phase 
zone is caused mainly by the solid-phase movement,  
that is, only the t e r m  1/Ub(~Ub/OT ) makes the left- 
hand side of  equation (15) greater than zero;  or (2) 
~gs/OT > 0, which implies that the unstable flow is 
caused jointly by both the effective stress and the 
gravity force acting on a fluid with various densities. 

Whether stable flow or unstable flow develops in 
the two-phase zone of  the solidifying alloy depends 
on the cooling rate e. For  an A1M.5 wt% Cu alloy, 
for example, stable flow occurs when ~ > 10 ~ ¢'C s 
and unstable flow occurs when ~: < 10 -2 °C s ~ [16]. 
The two-phase zone associated with the solid network 
can strain under the action of  a definite stress. When 
the cooling rate is large, the solidifying isotherm 
advances fast and there is not enough time to produce 
the strain. This is the case shown with equation (18). 
It should be noted, however, that a residual stress may 
remain in the solidified ingot through the strain does 
not  occur. When the cooling rate is small, the move- 
ment of  the isotherm is slow, and the effective stress 
acting on the solid network may play a role in forming 
"channel  space" that fills up with unstable fluid flow. 
Figure 2 is a schematic illustration of  the effect of  the 
solid-phase movement  on the flow channel in a volume 
element for both cases : stable flow and unstable flow. 
Figure 2a depicts the case for stable flow where the 
solid-phase movement  plays no role in forming the 
channel. Figure 2b depicts the case for unstable flow 
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due to solid-phase movement only. It should be under- 
stood that this case is merely theoretical because natu- 
ral convection due to gravity always exists in the two- 
phase zone except for under microgravity conditions. 
In Fig. 2c, the unstable flow in the channel is caused 
by both the stress and by gravity acting on a fluid with 
variable density. 

5. THE MODELS FOR CALCULATION AND THE 
COMPUTED RESULTS 

5.1. The solidification model and the temperature field 
The solidification model in this paper is sche- 

matically presented in Fig. 3, where there is a chill 
surface at each side of the mold and an insulated wall 
on its top and on its bottom. In what follows the 
model is used to investigate the effect of the stress on 
interdendritic fluid flow after a solid network has been 
formed in the two-phase zone of an alloy. The strain 
and stress due to solidification shrinkage are taken 
into consideration here. 

It is convenient to specify the temperature field first, 
before the pressure field and the velocity field are 
calculated. The method used to specify the tem- 
perature field is mainly due to Maples and Poirier's 
work [6]. The positions of the liquidus and the eutectic 
isotherms are given by 

L 
[XL(t)[ = ~ - - b L x t  q (21a) 

L 
[XE(t)I = ~ --bExtq--aE. (21b) 

If temperature varies linearly across the mushy zone, 
the temperature field can be obtained from the equa- 
tion below : 

( Ix[ -  [XE[) (22) 
T(Ixl, t) = TE+ ( ~ 1 ~ )  (TL-- TE). 

5.2. The velocity equation and the pressure equation 
The velocity equation used to calculate the inter- 

dendritic fluid flow is based on Darcy's law [2], thus 

K 
VL = -- - -  (Vp+ptg). (23) 

qgL 

In order to complete the calculation of the inter- 
dendritic fluid flow, the pressure equation in the two- 
phase zone was derived [6] : 

where 

V2p + A. Vp + B = 0 (24) 

/ K  \ / r  l aT \ 
B = ~ V "  ~ p L g , ) + a ~ ; g L  ~[ - - p t g ' V T )  

PL (PL -- PS) --  (1 --  k )ps  CL d p L / d C L  a =  
PL (1 -- k)Ps CLd T/d CL 

The boundary conditions for equation (24) are as 
follows. Since it is assumed that convection in the bulk 
liquid is negligible, then 

P = Po + PLog(H--y) 

at X=IXL[ for 0~<y~<H. (25) 

Since the top and the bottom of the two-phase zone 
in Fig. 3 are insulated, thus 

V, = 0 at y = 0 and y = H 

for [XE[ ~< IXl ~< IXLI. (26) 

At the eutectic isotherm, there is a finite amount of 
liquid of eutectic composition which solidifies at a 
constant temperature. Since the densities of the eutec- 
tic-liquid and the eutectic-solid are not equal, there 
must be flow to compensate for solidification shrink- 
age (or expansion) of the eutectic. This requirement 
is 

PSE -- PLE 
V~ - UE 

PLE 

at X=IXE] for 0~<y~<H. (27) 

Equations (26) and (27) are rewritten to provide the 
boundary conditions for the pressure equation. Sub- 
stituting equation (26) for V,. in equation (23) gives 

ap 
a), PEg at y = 0 and y = H 

for IXL[ ~< [xl ~< [XEI (28a) 

and substituting equation (27) for V~ in equation (23) 
gives 

@ _ qYL PSE- PLE UE 
•x K PLE 

at X=IXEI for 0~<y~<H. (28b) 

Also, at the centerline 

ap 
Ox = o. (29) 

5.3. The effective stress 
As described earlier, during solidification a stress 

develops and acts on the solid network. The stress 
results from solidification shrinkage and solid con- 
traction. The two-phase zone can not freely contract 
with decreasing temperature when the solid network 
appears in the whole zone, and there is a resistance to 
shrinkage of the two-phase zone. It is proposed that 
the stress and the strain be calculated by the models 
described below. 

The solidification shrinkage/3 can be evaluated with 
the liquid and solid densities during solidification : 

/3 = P s - - P L  (30) 
Ps 

Figure 4 shows liquid and solid densities for A1-4.5 
wt% Cu alloy [2]. Since fl is a volume contraction 
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Fig. 3. Solidification model : (a) before forming network ; (b) after forming network ; I, solid zone, II, two- 
phase zone ;III, liquid zone. 

percentage, the strain ~ due to the shrinkage should 
be approximately 

I = ~/~. (31) 

The two-phase zone of a solidifying alloy is gen- 
erally regarded as a body with visco-elastic-plastic 
behavior. The incorporation, however, of viscous pro- 
cesses into a model of the formation process leads to 
a great increase in the complexity of the problem. In 
consequence, a full visco-elastic-plastic model is not 
available at the present time. The following 
discussion, therefore, concentrates on the simpler 
treatment that considers the two-phase zone of the 
solidifying alloy as a Kelvin body with visco-elasticity, 
that  is [17, 18], 

as = q~' + ET. (32) 

According to equation (12), the effective stress acting 
on the solid network is 

a' = m(tl~ + E,/) (33) 

O_x~O 

S.IO 

2,8O 

0 

/ 
| I I 

s 1'o is ill = = = 

Fig. 4. Liquid and solid densities in two-phase zone of A1- 
4.5 wt% Cu alloy. 

where m = 9 3  at 0 .2~<9s<0.75 and m = 0  at 
9s < 0.2. 

Figure 5(a) shows the calculated profile of inter- 
dendritic fluid flow in the two-phase zone of an alloy 
under the cooling condition of forming unstable flow, 
but without the action of the effective stress. Figure 
5(b) shows the calculated profile with the action of 
the effective stress. It can be seen by comparison that 
the back-flow towards the centerline in Fig. 5(b) is 
larger than in Fig. 5(a). Figure 6 shows the depen- 
dence of the effective stress on the positions of x- 
coordinate for the different positions of y-coordinate 
when calculating the velocity profiles in Fig. 5(b). 

6. CONCLUSIONS 

(1) When solid network movement in the two- 
phase zone is taken into consideration, the original 
local solute redistribution equation is expanded into 
equation (7), in which the term 1/gL(SgL/Ot--div V's) 
replaces the term 1/gL(3gL/t)O in the original equation. 
The divergence of the velocity field V~ is dependent 
on the history of the effective stress a'  acting on the 
solid network. 

(2) The effective stress a'  is directly proportional 
to the solid-solid contact coefficient m, which is depen- 
dent on the volume fraction solid gs for a certain 
casting structure such as equiaxed crystal. With 
increasing gs, the contacts among the solid-phase 
grains in the two-phase zone increase and the mag- 
nitude of a'  increases. 

(3) Under last cooling rates, the solidifying iso- 
therm advances quickly and there is not enough time 
to make the solid network compressible. However, 
with decreasing cooling rate, the movement of the 
isotherm is slow and there may be enough time for 
the solid network to form. The unstable flow in the 
two-phase zone, which is caused by both the effective 
stress and the gravity force acting on a fluid with 
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Fig. 5. Velocity profiles after forming network : (a) without action of stress, (b) with the action. 

varying density, will fill the "channel  space" formed 
by the network movement.  

(4) The calculated velocity profiles show that the 
back-flow towards the centerline of  the ingot when 

N/(III | 
r - s ~ .  I,,.1~. r - ~ n  

Fig. 6. Dependence of the effective stress on position of x at 
different positions of y. 

the effective stress is included in the analysis is larger 
than that when the effective stress is ignored. 
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APPENDIX: DERIVATION OF EQUATION (7) 

For Ps = constant, substituting equation (6) into equation 
(2) and expanding the right-hand side of equations (2) 
provide 

a(pC) 
- Ps(~sV" (gs Vs) --gLPL VL" VCL -- CLV "gLPL VL 

at 

(Al) 

or substituting equation (1) into equation (AI) 

= ap 
a(pC)at - -Ps(Cs- -CL)V ' (gsVs)+CL ~,t --gLpL VL'VCI" 

(A2) 

From equations (3) and (5), the left-hand sides of equa- 
tions (1) and (2) can be expressed as 

~?~ = gt (gsPs +gLPL) (A3) 

and 

,~(pC) ,? 
~t at (gsPsCs +gLPLCt.). (A4) 

Since assumptions (5), (7), and (8) still exist now, that is, 
the equilibrium partition ratio k applies at the liquid-solid 
interface, there is no diffusion in the solid, and Ps = constant 
during solidification, then [1] 

(? - . p  ~ g s  ( A 5 )  (.qspsCs) = KeLps ~ - .  

Substituting equations (A3)-(A5) into (A2) and rearranging, 

p s C t . ( 1  - k )  L c?t + v .  (qsVs) = g L P L ~ 7  I +gLPLVL "VCI. 

(A6) 

If CL depends only on temperature and hence on position 
and time, an expression describing movement of iso- 
concentrations and isotherms is 

t: ~CL/dt 
(A7) 

VT VCL 

when no pores form, i.e. gL+gS = 1 or agL = -a,qs, and 
fl = (Ps--PL)/Ps. Combining equations (A6) and (A7) gives 
equation (7). 


